

SNS ACCUMULATOR INJECTION

H– Transport and Injection Mini-Workshop DEC. 9,10 2004

Y. Y. LEE BROOKHAVEN NATIONAL LABORATORY

ACKNOWLEGEMENT

BNL SNS ACCELERATOR PHYSICS TEAM

D.T. Abell, J. Beebe-Wang, M. Blaskiewicz,
N. Catalan-Lasheras, A.V. Fedotov, W.
Meng, Y. Papaphilippou, D. Raparia, N.
Tsoupas, J. Wei, W.T. Weng, S.Y. Zhang

SNS LAYOUT

 Extra long linac tunnel is reserved for future energy/power upgrade; ring capacity reserved

ISSUES

- VERY HIGH PROTON POWER
- UNPRECEDENTED NUMBER OF PROTON ACCUMULATION 2 X 10¹⁴
 - SPACE CHARGE
 - LOSS AND COLLIMATION
 - INSTABILITIES AND IMPEDANCE
- HANDS ON MAINTENANCE
 - LIMIT LOSS TO < 1 WATT / m (10⁻⁴ LOSS)
- STRICT PROTON DISTRIBUTION REQUIREMENTS AT THE TARGET
 - INJECTION PAINTING
- RELIABILITY, AVAILABILITY AND MAINTAINABILITY

RING LATTICE FUNCTIONS

Time: Sun Dec 19 16:36:10 1999 Last file modify time: Fri Dec 17 13:56:46 1999

Injection layout

Fixed chicane

INJECTION LOSSES and STRIPPING FOIL

- EXCITED STATE H^O EMERGING FROM FOIL
 - 2 ~ 10 % DEPENDING ON FOIL THICKNESS
- SINGLE AND MULTIPLE SCATTERING
- NUCLEAR SCATTERING
 - DEPENDS ON FOIL THICKNESS AND SIZE (EFFECTIVE LINAC EMITTANCE)
- LINAC BEAM MISSING THE FOIL
 - STABILITY OF LINAC BEAM
 - CONTROLLED DUMPING TO INJECTION DUMP
- ISSUE OF TWO STRIPPED ELECTRON DUMPING (~2 KW)
 - COLLECTION OF TWO STRIPPED ELECTRONS
 - FOIL HEATING AND LIFE

H' STRIPPING FOIL ISSUES

- REQUIRED HIGH INTENSITY LOW EMITTANCE LINAC BEAM
- HEAT LOSS MECHANISM
 - BLACKBODY RADIATION
 - CONDUCTION
- THERMAL SHOCK OF RAPID HEATING AND COOLING
- HEATING---VOLUME EFFECT
- COOLING---SURFACE
 - THE THINER SURVIVES LONGER

EXCITED HOLIFETIME

LIFE TIME vs MAGNETIC FIELD FOR n=4 and 5 STATE

10⁻⁵ OF INJECTED BEAM IS EXPECTED OUTSIDE ϵ =160π mm-mr

STRIPPING EFFICIENCY @ 1 GeV

CALCULATED FOIL TEMPERATURE

Maximum Temperatures on The SNS Carbon Stripping Foils

Design Requirement of #2 and #3 Chicane Magnets

Field Integrals from
$$-\infty$$
 to foil = 237.6 kG-cm
from foil to $+\infty$ = 261.4 kG-cm
two C magnets = 499 kG-cm, to 0.5e-4 (R=7cm)

#2 and #3 C magnets (with coils)

• Total Integral along 0, 90, 180, 270 degree lines

Integrated Multipoles

(R=8 cm; z from -200 to 400 cm)

n	Int (bn)	Int (bn)/(b1)	Int (an)	Int (an)/(b1)
	(g-cm)	(ratio)	(g-cm)	(ratio)
1	4.99742e+05	1.00000e+00	0.00000	0.00000
2	-1.35119e+02	-2.70378e-04	6.40919e+00	1.28250e-05
3	-9.05941e+01	-1.81282e-04	-5.27759e+00	-1.05606e-05
4	7.11133e+01	1.42300e-04	-2.35036e+00	-4.70315e-06
5	8.88407e+01	1.77773e-04	-2.05767e-01	-4.11747e-07
6	8.62674e+00	1.72624e-05	4.75541e+00	9.51574e-06

ELECTRON PATH

ELECTRON CATCHER

LECTRONS ARE SPIRALING WITH ~20° PITCH AT THE BOTTOM OF THE VACUUM CHAMBER

HE CATCHER HAS UNDER CUT IN ORDER NOT TO RELEASE ANY SECONDARY ELECTRONS

PHASE SPACE PAINTING

 CREATE DESIRED PHASE SPACE DISTRIBUTION FROM LINAC BEAM

- TO CONTROL LOSS DUE TO SPACE CHARGE
- REDUCE FOIL HITS BY CIRCULATING BEAM
- TO SATISFY DISTRIBUTION AT THE TARGET

LINAC TO RING INTERFACE PARAMETER

Trans. Emitt. < 0.5 pi mm mr (norm, rms)

Energy spread ±0.3 MeV (rms)

Bunch spread ±1.5 deg (rms)

Energy centroid error ± 1.5 MeV max

Phase centroid error ± 2 degrees

Beam halo outside 5 sigma <10⁻⁴

Beam chopper gap < 10⁻⁴

BASIC PAINTING SCHEMES

Correlated painting

Anti-correlated painting

CORRELATED PAINTING

Correlated painting with/without space charge

ANTI-CORRELATED PAINTING

Anti-correlated painting with/without space charge

INJECTION MISMATCH AND FOIL LIFE

 USE INJECTION MISMATCH TO

LONGITUDINAL PHASE SPACE PAINTING

- PLANED BUT NOT IMPLEMENTED
- KEEP EXTRACTION GAP CLEAN
 - MEBT CHOPPER
- REDUCE SPACE CHARGE EFFECT
- TO HAVE HANDLE ON LONGITUDINAL AND TRANSVERSE INSTABILITIES
 - USE ENERGY SPREADER TO CONTROL THE ENERGY SPREAD WITHOUT ENERGY TAIL
- INJECTING IN DISPERSION FREE STRAIGHT GIVES FREEDOM TO CHOOSE ENERGY SPREAD

LONGTUDINAL DISTRIBUTION ESS

 ESS LONGITUDINAL DISTRIBUTION AFTER 1000 TURN INJECTION

INJECTION WITH LINAC PHASE RAMPING,

 ENERGY VARYING INJECTION LEAVES LUMPINESS IN LONGITUDINAL DISTRIBUTION

SPALLATION NEUTRON SOURCE

EXPECTED ENERGY SPREAD IN HEBT

ENERGY SPREAD BY PHASE SCAN

LONGITUDINAL DISTRIBUTION WITH SPREADER

- ENERGY SPREADER CAVITY 3.5 MV
- $\Delta f = 100 KHz$

